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ABSTRACT
We present a probabilistic model that uses both prosodic and lexi-
cal cues for the automatic segmentation of speech into topic units.
The approach combines hidden Markov models, statistical language
models, and prosody-based decision trees. Lexical information is
obtained from a speech recognizer, and prosodic features are ex-
tracted automatically from speech waveforms. We evaluate our ap-
proach on the Broadcast News corpus, using standard evaluation
metrics. Results show that the prosodic model alone outperforms
the word-based segmentation method. Furthermore, we achieve an
additional reduction in error by combining the prosodic and word-
based knowledge sources.

1. Introduction
Topic segmentation deals with the problem of automatically dividing
a stream of text or speech into topically homogeneous blocks [1].
That is, given a sequence of (written or spoken) words, the aim is
to find the boundaries where topics change. Topic segmentation is
an important task for various language understanding applications,
such as information extraction and retrieval, and text summarization.
In this paper, we present our work on fully automatic detection of
topic boundaries from speech input.

Past automatic topic segmentation systems have depended mostly
on lexical information [6, 4, 1, 16, among others]. One problem for
applying the text-based approach to speech input is the lack of ty-
pographic cues (such as headers, paragraphs, sentence punctuation
and capitalization). On the other hand, speech provides an addi-
tional, nonlexical knowledge source through its durational, intona-
tional, and energy characteristics, i.e., itsprosody.

Prosodic cues are known to be relevant to discourse structure in
spontaneous speech [8, 7, 14, among others], and can therefore be
expected to play a role in indicating topic transitions. Furthermore,
prosodic cues by their nature are relatively unaffected by word iden-
tity, and should therefore improve the robustness of lexical topic seg-
mentation methods based on automatic speech recognition.

Past segmentation studies involving prosodic information have gen-
erally relied on hand-coded cues (with the notable exception of [5]).
We therefore believe the present work to be the first that combines
fully automatic extraction of both lexical and prosodic information
for topic segmentation. Furthermore, we have adopted the strict
evaluation paradigm used by the government-administered TDT-2
(Topic Detection and Tracking Phase 2) [15] program, allowing fair
comparisons of various approaches both within this study and in re-
lation to other work. The general framework for combining lexical
and prosodic cues for tagging speech with various kinds of “hidden”
structural information is a further development of our earlier work

on sentence segmentation and disfluency detection for spontaneous
speech [10, 12, 13].

2. Approach
Topic segmentation in the paradigm used by us and others [15] pro-
ceeds in two phases. In the first phase, the input is divided into
contiguous strings of words assumed to belong to one topic each.
We refer to this step as “chopping”. For example, in textual input,
the natural units for chopping are sentences (as can be inferred from
punctuation and capitalization). For continuous speech input, the
choices are less obvious; we compare several possibilities in our ex-
perimental evaluation. Here, for simplicity, we will use “sentence”
to refer to units of chopping, regardless of the criterion used. In
the second phase, the sentences are further grouped into contiguous
stretches belonging to one topic, i.e., the sentence boundaries are
classified into “topic boundaries” and “nontopic boundaries”.1

Topic segmentation is thus reduced to a boundary classification
problem. We will useT to denote the string of binary boundary
classifications. Furthermore, our two knowledge sources are the
(chopped) word sequenceW and the stream of prosodic features
F . Our approach aims to find the classificationT with highest prob-
ability given the information inW andF

argmax
T

P (T jW;F )

using statistical modeling techniques. In the following sections, we
describe each of the elements of the overall model in turn: first, a
model of the dependency between prosodyF and topic segmenta-
tion T ; second, a model relating wordsW andT ; and finally, an
approach for combining the models.

2.1. Prosodic Model
For modeling topic boundaries prosodically we used a wide range
of features that were automatically extracted from the data. LetFi

be the features extracted from a window around theith potential
topic boundary (chopping boundary), and letTi be the boundary
type (boundary/no-boundary) at that position. We trained CART-
style decision trees [2] to predict theith boundary type, i.e., to esti-
mateP (TijFi;W ). The decision is only weakly conditioned on the
word sequenceW , insofar as some of the prosodic features depend
on the phonetic alignment of the word models. We can thus expect
the prosodic model estimates to be robust to recognition errors.

For training, we automatically aligned and extracted features from
70 hours of the Linguistic Data Consortium (LDC) 1997 Broadcast

1We do not consider the problem of detecting recurring, discontinuous
instances of the same topic, a task known as “topic tracking” in the TDT
paradigm.



News (BN) corpus. Topic boundary information determined by hu-
man labelers was extracted from the markup accompanying the word
transcripts of this corpus.

We started with a large set of prosodic features capturing various du-
rational and intonational aspects of speech prosody, as in [10]. We
included features that, based on descriptive literature, we believed
should reflect breaks in the temporal and intonational contour. We
developed versions of such features that could be defined at each
inter-word boundary, and which could be extracted by completely
automatic means (no human labeling). Furthermore, the features
were designed to the extent possible to be independentof word iden-
tities, for use with recognizer output.

The greedy nature of the decision tree learning algorithm implies
that larger initial feature sets can give worse results than smaller
subsets. Furthermore, it is desirable to remove redundant features
for computational efficiency and to simplify interpretation of re-
sults. For this purpose we developed an iterative feature selec-
tion algorithm to find useful task-specific feature subsets. The al-
gorithm combined elements of brute-force search with previously
determined heuristics about good groupings of features. We used
the entropy reduction of the overall tree after cross-validation, as a
method for selecting a good set of features. Entropy reduction is
the difference in test-set entropy between the prior class distribution
and the posterior distribution estimated by the tree; it is a more fine-
grained metric than classification accuracy, and is also more relevant
to the model combination approach described later. The algorithm
proceeds in two phases: in the first phase, the number of features is
reduced, checking the effect of each feature on the performance by
leaving out one feature at a time. The second phase then starts with
the reduced number of features, and performs a beam search over all
possible subsets of features. The decision tree paradigm also allows
us to add, and automatically select, other (nonprosodic) features that
might be relevant to the task.

We started with a set of 73 potential features. The iterative algo-
rithm reduced this to a set of 5 features helpful for our task. Upon
inspection, the following characteristics are modeled by the tree. We
provide for each characteristic the relative frequency with which as-
sociated features are queried in the final decision tree; this gives an
approximate indication of feature importance.

1. F0 differences across the boundary (44.0%). Several fea-
tures compare the F0 following the boundary to F0 before
the boundary. The F0s are measured over the duration of the
words adjacent to the boundary, or over a fixed length win-
dow of 200 milliseconds. Values are either mean F0, or min-
imum/maximum F0, in the regions surrounding the boundary.
The mean captures a range effect; the minimum and maximum
values make the measure more sensitive to local variation, such
as rising to accented syllables, and final pitch falls. Rather
than using raw pitch tracks, all F0 features are based on an ex-
plicit model of pitch-halving/doubling, using straight-line styl-
izations for improved robustness [11].

2. Pause duration (36.3%). The duration of the nonspeech inter-
val occurring at the boundary.2

2The importance of pause duration is actually underestimated by this
measure of feature use; as explained later, pause durations are already used
during the chopping process, so that the decision tree is applied only to
boundaries exceeding a certain duration. Separate experiments using bound-

3. Speaker change (15.5%). Whether or not a speaker change
occurred at the boundary.

4. Gender (4.2%). We found stylistic differences between males
and females in the use of F0 at topic boundaries. This is
true even after proper normalization, e.g., equating the gender-
specific non-topic boundary distributions. Additionally, we
noted that non-topic pauses (i.e., chopping boundaries) are
more likely to occur in male speech, a phenomenon that could
have several causes and awaits further analysis.3

2.2. Language Model
For word-based modeling, we use standard language models and a
hidden Markov model (HMM) based tagger. Similar to the Dragon
HMM segmentation approach [16], we built an HMM, in which
the states are topic clusters, and the observations are sentences (or
chopped units). The resulting HMM forms a complete graph, allow-
ing transition between any two topic clusters. The exact number of
topic clusters is not important, as long as it is large enough to make
two adjacent topics in the same cluster unlikely. The observation
likelihoods for the HMM state represent the probability of generat-
ing a given sentence in a particular topic. The likelihoods are com-
puted from unigram language models trained on the clusters, which
are determined automatically using an unsupervised clustering algo-
rithm, on the training data. All transitions within the same topic are
given probability 1, while all transitions between topics are set to a
globaltopic switch penalty, which is optimized on held-out training
data. This parameter enables us to trade off between false alarms and
misses. Once the HMM is trained, we use the Viterbi algorithm to
search for the best state sequence and corresponding segmentation.

In addition to the basic HMM segmenter developed by Dragon, we
incorporated two additional states, for modeling the initial and final
sentences of a topic segment. We reasoned that this approach can
capture formulaic speech patterns used by broadcast speakers. Like-
lihoods for the start and end models are obtained as the unigram
language model probabilities of the topic-initial and final sentences,
respectively, in the training data. Note that a single start and end
state are shared for all topics. Also, traversal of the initial and final
states is optional in the HMM topology. We observed a 5% rela-
tive reduction in segmentation error over the baseline HMM topol-
ogy using initial and final states. Because the topic-initial and final
states are optional, our training of this model is probably subopti-
mal. Instead of labeling all topic-initial and final training sentences
as data for the corresponding states, we should be training the model
by using repeated forced alignments to find actual good examples of
initial and final sentences (an approximate version of expectation-
maximization [3]).

While constructing the topic language models, we used the pooled
TDT Pilot and TDT-2 training data, which covers the transcriptions
of Broadcast News from January 1992 through June 1994 and from
January 1998 through February 1998, respectively (this corpus is
distinct from the 1997 BN acoustic corpus used for prosodic model
training and overall testing). We removed stories with fewer than

aries below our chopping threshold show that the tree makes use of shorter
pauses for segmentation decisions as well.

3For example, it could be that male speaker in BN are assigned longer
topic segments on average, or that male speaker are more prone to pausing
in general, or that males dominate the spontaneous speech portions where
pausing is naturally more frequent.



300 and more than 3000 words, leaving 19,916 stories with an aver-
age length of 538 words without any stop words. Then we automat-
ically constructed 100 topic language models, using the multipass
k-means algorithm described in [16]. We did not smooth the indi-
vidual topic language models, but instead interpolated them with the
global unigram language model, which gave better results.

2.3. Model Combination
The word-based HMM was modified to use probabilities from the
decision tree estimator as additional likelihood scores, with an em-
pirically optimized weighting. To this end, we inserted a fictitious
boundaryobservation between adjacent sentences, and introduced
two more “boundary” states into the HMM topology. Between sen-
tences, the model must pass one of the boundary states, denoting
either the presence or absence of a topic boundary.

LikelihoodsP (FijTi) for the boundary states are obtained from the
prosodic model. The decision tree posterior probabilities must be
converted to likelihoods, either by dividing them by priors or by
training the decision trees on a balanced training set. We preferred
the resampling method, so the following equations hold:

P (TijFi) =
P (FijTi)P (Ti)

P (Fi)
/ P (FijTi)P (Ti) / P (FijTi) :

NoteP (Fi) is a constant for differentTi, andP (Ti) = 0:5 by virtue
of resampling.

3. Experiments and Results
Various models were evaluated on three hours (6 shows) from the
1997 BN corpus. To make best use of the available test data, we
used a two-fold jack-knifing procedure to tune the model parameters
(topic switch penalties, and model combination weights): parame-
ters were tuned on each of two halves of the data, and then tested
on the respective other half. Reported results represent the averages
of these two trials. The error rates obtained in all experiments are
according to the procedures set out in the DARPA Topic Detection
and Tracking Project [15], with the NIST-TDT evaluation software.
They represent a weighted detection error, using a particular choice
of costs for false alarms and misses.

Two test conditions were used: forced alignments using the true
words, and recognized words as obtained using a simplified version
of the SRI Broadcast News recognizer [9], with a word error rate of
29%. We first present baseline results with word information alone,
followed by results for the prosodic model and the combined model.

3.1. Chopping and Segmentation by Language
Model

Unlike written text, the output of the automatic speech recognizer
contains no sentence boundaries. Therefore, grouping words into
(pseudo-)sentences (chopping) is a nontrivial problem while pro-
cessing speech. Some pre-segmentation into roughly sentence-
length units is necessary since otherwise the observations associ-
ated with HMM states are too inhomogeneous with regard to topic
choice, causing very poor performance.

We investigated fixed-length blocks (based on number of words),
turn boundaries (speaker change locations), pauses, and, for refer-
ence, actual sentence boundaries obtained from the transcripts, as

chopping criteria. Table 1 gives the error rates for the four condi-
tions, using the true word transcripts for testing. For the PAUSE
condition, we empirically determined an optimal minimum pause
duration threshold to use. Specifically, we considered pauses ex-
ceeding 0.66 second as potential topic boundaries in this (and all
later) experiment. For the FIXED condition, a block length of 10
words was found to work best.

Chopping Criterion Error Rate on
Forced Alignments

FIXED 19.84%
TURN 22.78%
SENTENCE 20.56%
PAUSE 19.50%

Table 1: Error rates with various chopping criteria.

We conclude that a simple prosodic feature, pause duration, is an
excellent criterion for the chopping step, working as well as or better
than standard sentence boundaries.

As a side issue in our experiments, we wanted to verify that our test
data (from the1997 BN corpus) was comparable in difficulty to the
official test corpus of the 1998 TDT-2 evaluations, for which we had
only recognizer output(from a different system) available. Table 2
shows that the two test sets exhibit very similar results, justifying
our use of the 1997 BN corpus for practical reasons.4

Test set Error Rate on Error Rate on
Forced Alignments Recognized Words

TDT-2 NA 20.40%
BN’97 19.50% 20.86%

Table 2: Error rates using different corpora.

3.2. Segmentation using Prosody and Combined
Models

Table 3 gives our results with forced alignments and recognized
words for each of the individual models and the combined model. As
shown, the error rate for the prosody model alone is lower than that
for the language model, and combining both models gives further
improvement. With the combined model, the error rate decreased by
22.97% relative to the language model, for the correct words, and by
19.27% for recognized words.

As discussed earlier, the results with the language model alone make
use of prosody in the chopping step.

4. Summary and Discussion
Results so far indicate that prosodic information provides an excel-
lent source of information for automatic topic segmentation, both by

4In particular, we chose the 1997 BN corpus because of the availability
of detailed annotated transcripts for a variety of other tasks (such as sen-
tence segmentationand named entities) that are the subject of current lexical-
prosodic modeling research at SRI.



Model Error Rate on Error Rate on
Forced Alignments Recognized Words

LM Only 19.50% 20.86%
Prosody Only 18.87% 19.85%
Combined 15.02% 16.84%

Table 3: Summary of error rates with individual and combined mod-
els, using pause duration as a chopping criterion.

itself and in conjunction with lexical information. Pause duration, a
simple prosodic feature that is readily available as a by-product of
speech recognition, proved extremely effective in the initial chop-
ping phase, as well as being the most important feature used by
prosodic decision trees. Additional prosodic features based on pitch
were are also found to be relevant (and feasible) for automatic seg-
mentation.

The HMM-based lexical topic segmentation approach [16] is easily
extended to incorporate the decision tree posterior probabilities (as
long as the tree is trained on a uniform prior distribution). The fact
that the model combination gives a significant win indicates that the
lexical and prosodic knowledge sources are sufficiently complemen-
tary for this simple combination approach (which assumes statistical
independence).

The results obtained with recognized words (at a 29% word error
rate) did not differ greatly from those obtained with correct word
transcripts (7% error increase with LM, 5% error increase with
prosody). Still, part of the appeal of prosodic segmentation is that it
is inherently robust to recognition errors. This characteristic makes
it even more attractive for use in domains with higher error rates due
to poor acoustic conditions or more conversational speaking styles.

Several aspects of our system are suboptimal. For example, we
have not yet optimized the chopping stage relative to the combined
model (only relative to the lexical-only segmenter). Also, the use
of prosodic features other than just pause should further improve
the overall performance. Ultimately, we want to eliminate the need
to separate chopping and HMM classification stages, which is both
theoretically unappealing and inconvenient in the optimization of the
overall system.

5. Conclusion
We have presented our work on automatic topic segmentation from
speech, using a combination of lexical and prosodic cues. Our re-
sults show that the prosodic model alone outperforms the word-
based segmentation method, and an additional reduction in error can
be achieved by combining the lexical and prosodic models.
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